Dissociable contributions by prefrontal D1 and D2 receptors to risk-based decision making.
نویسندگان
چکیده
Choices between certain and uncertain rewards of different magnitudes have been proposed to be mediated by both the frontal lobes and the mesocorticolimbic dopamine (DA) system. In rats, systemic manipulations of DA activity or inactivation of the medial prefrontal cortex (PFC) disrupt decision making about risks and rewards. However, it is unclear how PFC DA transmission contributes to these processes. We addressed this issue by examining the effects of pharmacological manipulations of D(1) and D(2) receptors in the medial (prelimbic) PFC on choice between small, certain and large, yet probabilistic rewards. Rats were trained on a probabilistic discounting task where one lever delivered one pellet with 100% probability, and the other delivered four pellets, but the probability of receiving reward decreased across blocks of trials (100, 50, 25, 12.5%). D(1) blockade (SCH23390) in the medial PFC decreased preference for the large/risky option. In contrast, D(2) blockade (eticlopride) reduced probabilistic discounting and increased risky choice. The D(1) agonist SKF81297 caused a slight, nonsignificant increase in preference for the large/risky lever. However, D(2) receptor stimulation (quinpirole) induced a true impairment in decision making, flattening the discounting curve and biasing choice away from or toward the risky option when it was more or less advantageous, respectively. These findings suggest that PFC D(1) and D(2) receptors make dissociable, yet complementary, contributions to risk/reward judgments. By striking a fine balance between D(1)/D(2) receptor activity, DA may help refine these judgments, promoting either exploitation of current favorable circumstances or exploration of more profitable ones when conditions change.
منابع مشابه
Dopaminergic modulation of risky decision-making.
Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a "Risky Decision-making Task" that involves choices between small "safe" rewards and large "risky" rewards accompanied by adverse consequ...
متن کاملDopamine Receptors Differentially Enhance Rule Coding in Primate Prefrontal Cortex Neurons
Flexibly applying abstract rules is a hallmark feature of executive functioning represented by prefrontal cortex (PFC) neurons. Prefrontal networks are regulated by the neuromodulator dopamine, but how dopamine modulates high-level executive functions remains elusive. In monkeys performing a rule-based decision task, we report that both dopamine D1 and D2 receptors facilitated rule coding of PF...
متن کاملEnhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex.
The role in spatial divided and sustained attention of D1 and D2-like dopamine (DA) receptors in the rat prelimbic medial prefrontal cortex (mPFC) was investigated in a five-choice serial reaction time task. Rats were trained to detect brief flashes of light (0.5-0.25 sec) presented randomly in a spatial array of five apertures. When performance stabilized, animals received bilateral microinfus...
متن کاملDopaminergic Modulation of Risk-based
Psychopharmacological studies have implicated the mesolimbic dopamine (DA) system in the mediation of cost/benefit evaluations about effort-related costs associated with larger rewards. However, the role of DA in risk-based decision making remains relatively unexplored. The present study investigated how systemic manipulations of DA transmission affect risky choice assessed with a probabilistic...
متن کاملFunctional significance of central D1 receptors in cognition: beyond working memory
The role of dopamine D1 receptors in prefrontal cortex function, including working memory, is well acknowledged. However, relatively little is known about their role in other cognitive or emotional functions. We measured both D1 and D2 receptors in the brain using positron emission tomography in healthy subjects, with the aim of elucidating how regional D1 and D2 receptors are differentially in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 23 شماره
صفحات -
تاریخ انتشار 2011